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It is well known that high-order accurate shock-capturing schemes, 
e.g., second-order TVD and EN0 schemes, based on Eulerian formula- 
tion are capable of resolving a shock discontinuity in two grid points, 
but they smear a slip-line (contact-line) discontinuity over several grid 
points. In this paper we show theoretically and numerically that the 
first-order Godunov scheme based on the new Lagrangian formulation 
of Hui and Van Roessel for steady supersonic flow always resolves an 
isolated slip-line discontinuity crisply, provided it is initially aligned 
with a grid line. Moreover, a simple extension of the second-order 
scalar TVD scheme of Sweby to the system of Euler equations based on 
the new Lagrangian formulation, with no special procedure for slip-line 
detection, resolves slip-line discontinuities in at most two grid points. 
Many examples are given, showing excellent agreement with known 
exact solutions. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Important advances have been made on the numerical 
simulations, using a shock-capturing methodology, of 
inviscid gas flow as governed by the Euler equations of 
motion. This is most evident in the recent comprehensive 
survey article by Yee [ 11. 

It appears that most existing work is based on Eulerian 
formulation of fluid motion. It has also become traditional 
to treat steady flow as an asymptotic state of an unsteady 
flow after marching a large number of time steps, although 
Roe [2] has recently suggested that the time has come to 
reappraise this traditional approach. 

In the special case where the flow is everywhere super- 
sonic, steady flow can be easily computed as steady flow 
proper without artificially introducing the time variable. 
This is possible because the governing Euler equations for 
steady supersonic flow are of hyperbolic type, and thus one 
of the spatial variables can be used as a time-like variable. 
In this way, computer storage and time can be greatly 
reduced and accuracy increased. Glaz and Wardlaw [3] 
and Pandolli [4] have taken this approach with success. 

Supersonic flows are usually dominated by shock and 
slip-line (contact line) discontinuities. Woodward and 

Colella [S] observed, after reviewing three decades of 
research efforts in simulating such flows, that the overall 
accuracy of such (numerical) simulations is very closely 
related to the accuracy with which flow discontinuities are 
represented. 

It has now been well established (see Harten [6] for ideal 
gas flow and Liou et al. [7] for real gas flow) that with a 
second-order total variation diminishing (TVD) scheme or, 
better still, with a higher order essentially non-oscillatory 
(ENO) scheme, Eulerian formulation is capable of resolving 
a shock discontinuity in 1D unsteady flow in about two 
computation cells (two grid points). However, resolution 
of slip-line (contact-line) discontinuities in the Eulerian 
formulation is rather poor; it typically takes six or more 
cells to resolve it [6, 73. 

Based on the new Lagrangian formulation developed by 
Hui and Van Roessel [S, 91, the present authors [ 10, 
referred to as Part I hereafter] have applied the first-order 
Godunov scheme to compute two-dimensional steady 
supersonic flow. In this formulation the two independent 
variables are a stream function 5 and the Lagrangian time 
z, the latter playing a dual role as the Lagrangian label of a 
fluid particle while being the time of motion. Consequently 
a steady flow is computed, by marching in z in a way similar 
to 1D unsteady flow, as a steady flow proper and not as the 
asymptotic state of an unsteady flow. It has been shown in 
Part I that the new Lagrangian method provides an alter- 
native, and is potentially advantageous, to the Eulerian 
method, especially in resolving slip-line discontinuities. 

In this paper we first show theoretically and confirm 
numerically that the first-order Godunov scheme based on 
the new Lagrangian formulation for steady supersonic flow 
always resolves an isolated slip-line discontinuity crisply, 
provided it is initially aligned with a grid line. Further- 
more, we demonstrated that a straightforward extension of 
Sweby’s [ 1 l] second-order scalar TVD scheme to the 
system of Euler equations in the new Lagrangian formula- 
tion, with no special procedure for slip-line detection, 
always resolves a slip-line in at most two points. Many 
examples are given. 
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2. ON THE NUMERICAL RESOLUTION OF A 

SLIP-LINE (CONTACT-LINE) DISCONTINUITY 

As mentioned earlier, in any shock-capturing compu- 
tation based on the Eulerian formulation a slip-line dis- 
continuity is typically smeared over six or more grid points 
[6, 73. This in fact grows worse with increasing time r 
like O(7 l’(r- + I’), where r is the formal order of accuracy 
of the numerical scheme used. To remedy this, Harten [ 121 
suggested using artificial compression, which has been 
followed by Shu and Osher [13]. Harten [ 141 recently 
further developed a technique of sub-cell resolution. These 
techniques, when applied to high order EN0 schemes, have 
greatly improved the resolution of slip-line discontinuities. 
However, they require detection of the slip-line location 
which tends to complicate the logic in the computer code 
and is not always reliable in a complex flow field. Moreover, 
any artificial compression technique contains some free 
parameter, representing the degree of compression, whose 
value has to be determined case-by-case. Thus, in cases 
where an exact solution is not available for such “tuning,” 
there is a danger of over-compression in parts of the flow 
field. 

In this section we shall first review the properties of a slip- 
line in steady flow, by contrasting them with those of a 
shock, and then show that isolated slip-line discontinuities 
can be resolved crisply using the Godunov scheme based on 
the new Lagrangian formulation, provided the slip-line 
initially coincides with a computational cell boundary. 

Flow discontinuities are classified as shock and slip-line 
(including the special case of contact-line) discontinuity. 
Across a shock the tangential component of flow velocity is 
continuous while all other flow variables experience a jump. 
In contrast, across a slip-line the pressure p and the flow 
inclination 0 = tan ~ ‘(u/u) are continuous (U and v denote 
the X- and y-components of flow velocity, respectively), 
while all other variables, e.g., density p, flow speed q = 
Jm, Mach number M, and specific entropy S (defined 
as p/p’) experience a jump. A slip-line is also a streamline, 
whereas a shock line cannot be a streamline. Consequently, 
two shocks mah intersect, but two slip-lines never intersect, 
and slip-lines are thus necessarily isolated. A shock can 
be generated either suddenly or gradually (through con- 
vergence of Mach lines) but a slip-line can be generated only 
suddenly as a result of the interaction of two different flows, 
or the intersection of two shocks, or the sudden birth of a 
shock of finite strength in the interior of the flow field (an 
example of which is given in Appendix A). The strength of 
a shock can vary along the shock line; in particular, it may 
diminish to a Mach line. In contrast, the strength of a slip- 
line, as measured by the entropy jump across it, remains 
constant in between two shocks. This isa consequence of 
the constancy of entropy along a streamline in steady flow. 

In short, a slip-line is generated suddenly and, once 

generated, its strength remains unchanged until it meets a 
shock. Consider now two different uniform flows separated 
by a slip-line. They must have the same pressure and the 
same flow direction. Therefore, they do not affect each other 
in any way while moving alongside each other until the 
slip-line intersects a shock or other waves. This is just a 
direct mathematical result of the Euler equations of motion 
of an invisced fluid (but is not true of the Navier-Stokes 
equations for a viscous fluid). 

This physical property of the flow in the neighborhood of 
an isolated slip-line is modeled exactfy by the Godunov 
scheme based on the new Lagrangian formulation. In this 
formulation the Euler equations of motion of a perfect gas 
obeying a y-law in conservation form are (Part I, Eqs. (21)) 
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and x and y are the Cartesian coordinates of a fluid particle. 
According to the Godunov scheme (Part I) the outcome of 
the interaction of two different uniform flows QA and Qe 
separated by a slip-line at time r is the solution to the 
Riemann problem with QA and Qe as initial data. Here Q = 
(u, v, p, p)‘. This solution is exact and yields the same QA 
and Qe as the new uniform flows at time r + AT, AT being 
subject to the usual CFL stability condition. (The only 
possible error in computing flow states at z + AT from those 
at t is due to computer round-off, which we shall neglect). 
Now, since in the new Lagrangian cell advances in time r 
along a streamline with flow velocity (Eqs. (5)), it thus 
behaves literally as a fluid particle and the same cell can be 
identified with one and the same particle for all time. The 
cells adjacent to a slip-line-a streamline-never cross it but 
remain adjacent to it. The above procedure can therefore be 
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repeated until the slip-line meets a shock or other waves, 
showing that an isolated slip-line discontinuity is resolved 
crisply, provided it is initially taken as a cell boundary. 

By contrast, the computational cell in the Eulerian 
method (see [3,4]) advances in a fixed direction in space, 
the x-direction say, which in general does not agree with the 
flow direction. Consequently, cells near a slip-line will cross 
it, and hence the Godunov cell-averaging scheme will smear 
the slip-line, rendering its resolution rather poor. 

The above discussions show clearly why the new 
Lagrangian method with Godunov scheme models the flow 
adjacent to a slip-line most honestly and, hence, why it is 
superior to the Eulerian method. This method of using 
streamlines as coordinate lines does, however, have a 

A 

problem of its own; namely, cells on the opposite sides of a 
slip-line advance at different flow speeds and hence tend to 
lose contact with each other physically. But this is easily 
remedied by choosing different time steps (AZ), and (dp)) 
for the two sides (denoted as “ + ” side and “ - ” side) such 
that 

(7) 

In this way, cells on directly opposite sides of a slip-line will 
remain so for all time and the physics of the flow is correctly 
modeled by the numerical scheme. 

In Fig. 1 the evolution of a slip-line in an otherwise con- 
tinuous flow is illustrated. y = 1.4 is used in all computations 
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FIG. 1. Slip-line Evolution, first order Godunov scheme. (ak(c) computed flow variables along the slip-line AA’; (a) flow inclination; (b) pressure; 
(c) entropies; (d) computed density along a typical time line BB’. 
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of this paper. The flow variables on one side of the slip-line 
are p = 1, p = 1.4, u = 8, u = 0 (hence, M = 8, S = 0.6243), 
whereas on the other side they are p = 1, p =0.35, u = 4, 
o = 0 (hence M = 2, S = 4.3482). The shape of the solid wall 
is given by y = -x2. A grid of 100 uniform cells of width 
h = 0.0002 is used in the computation using the first-order 
Godunov scheme based on the new Lagrangian formulation 
(Part I). Fifty cells are placed above the slip-line and the 
other 50 cells are below it, and the slip-line is taken to 
coincide with the interface boundary between two cells. The 
computed evolution along the slip-line of the flow inclina- 
tion 8, pressure p, density p, and entropy S are shown in 
Figs. la-c, whereas the density distribution along a typical 
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time line are shown in Fig. Id. It is clear from these figures 
that the slip-line remains invariant until the first Mach line 
from the point 0 begins to affect it and that the slip-line is 
resolved crisply. 

The evolution of the same initial slip-line is next studied 
using 100 uniform cells with the same width h, but the slip- 
line is now taken not to coincide with a cell boundary. 
Instead, it initially lies inside the 51st cell at 0.65 h above the 
cell’s lower boundary and 0.35 h below its upper boundary. 
(A new cell of width 0.65 h is inserted adjacent to the solid 
wall.) This situation arises more naturally in numerical 
computations of complex flow fields that do not employ 
special procedure for slip-line detection. Our computations 
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FIG. 2. Evolution of a slip-line, whose initial position does not coincide with a cell boundary. (aHb) computed flow variables along the slip-line; 
(a) densities; (b) entropies; (c) computed density along a typical time-line BB’ (see Fig. la). 
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show that a slip-line whose initial position lies inside a com- 
putational cell immediately splits itself into two adjacent 
slip-lines aligned with the boundaries of the cell containing 
the original slip-line (Figs. 2a-b). The sum of the jumps of 
a flow variable across those two slip-lines is also found to be 
equal to the original jump. Figure 2c plots the distribution 
of density along a typical time line which clearly shows that 
the original slip-line, whose position is not taken to be a cell 
boundary, is smeared numerically over one grid point. 

It is evident from the above theoretical discussions and 
numerical examples that Godunov scheme based on the 
new Lagrangian formulation resolves isolated slip-line 
discontinuities in the otherwise continuous flow crisply, 
provided the initial slip-line is taken to be a cell boundary. 
Smearing of a slip-line can, therefore, only come from the 
errors of the initial data or from its non-alignment with a 
cell boundary. Thus in the case of shock-shock interaction 
of Example 4 of Part I, the jump of a flow variable across 
neighboring cells near the interaction point is reduced (to 
the level of the difference of two shock jumps) at interaction 
and the first-order Godunov scheme smears the shock over 
only two grid points (Fig. 4a, Part I). The resulting slip-line 
is consequently also smeared over two grid points only 
(Figs. 4e-f, Part I). On the other hand, in the case of over- 
taking of shocks of Example 5 of Part I, the jump of a flow 
variable across neighboring cells near the interaction point 
is greatly increased (to the level of the sum of the strengths 
of the two shocks) at overtaking and the first-order 
Godunov scheme smears it to about eight points (Fig. 5a, 
Part I). As a consequence of this inaccuracy of the initial 
data, the slip-line generated due to shock-shock overtaking 
is also smeared over eight points, as is clearly shown in 
Fig. 5d of Part I. 

Clearly, then, to better resolve slip-line discontinuities 
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FIG. 3. Overtaking of shocks. Mach number distribution along a time 
line BE’, showing the resolution of slip-line with a high resolution TVD 
scheme. The slip-line resolution is greatly improved over the first-order 
Godunov scheme of Part I, Fig. 5d. 

numerically it is desirable to align a slip-line at its birth with 
a cell boundary in the computation. However, this requires 
a special procedure for slip-line detection which not only 
would complicate programming logic but also could be 
unreliable in complex flow fields. On the other hand, we 
have found (Section 3), after computer experiments with 
large number of examples, that once the Godunov scheme 
is upgraded to a high resolution TVD scheme the shocks are 
always resolved by two grid points while the slip-lines are 
resolved even more accurately-in most cases by only one 
grid point- with no detection procedure. This is clearly 
demonstrated in Fig. 3 which shows the Mach number 
variation along a slip-line after the overtaking of shocks. 
This is the case in Fig. 5d of Part I recomputed using the 
high resolution TVD scheme (explained in Section 3). The 
shock and the slip-line are now both resolved by one grid 
point without employing any procedure for detecting them, 
in direct contrast to the eight-point resolution of the 
slip-line in Part I (Fig. 5d). 

3. APPLICATION OF HIGH RESOLUTION 
TVD SCHEME 

3.1. The Updating Formula 

The first-order Godunov scheme in practice is notedly 
inaccurate and needs to be upgraded to higher order 
accuracy. There now exist many such high resolution 
schemes. In this paper, we shall extend the second-order 
accurate scalar TVD scheme of Sweby [11] to the Euler 
equations in our new Lagrangian formulation. 

Classical second-order schemes, e.g., the well-known 
Lax-Wendroff scheme, when applied to the Euler equations 
produce pre-discontinuity and post-discontinuity oscilla- 
tions which are non-physical and can cause computations 
to break down when negative pressure results from them. 
Schemes possessing the important property of total varia- 
tion diminishing, which was introduced by Harten [ 151, 
avoid non-physical oscillations near discontinuities. A TVD 
scheme can be second-order accurate except near extrema, 
where it degenerated to first order. 

Many second-order TVD schemes have been proposed 
for scalar equations and Osher and Sweby [16] have 
classified them into pre-processing and post-processing 
types. A typical class of post-processing schemes are those 
obtained through flux limiters. In particular, Sweby [ 111 
showed that the Van Leer scheme [ 171, the Chakravarthy 
and Osher scheme [18], the Roe scheme [19] are all 
derivable via suitable limiter functions. 

To compute a flow solution to Eq. (1 ), a rectangular grid 
is used to cover the flow domain in the 75 plane and the 
computation marches in the Lagrangian time z as in Part I. 
Any solid boundary present is represented by a streamline 
r = const. The superscripts n refers to the time step number 
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and subscriptj refers to the cell number. The marching step, 
&n=f+‘- tn, is uniform for allj excepts across a slip-line, 
where the marching step sizes (At), and (AT)- on the two 
sides of the slip-line are different, but are related by Eq. (7). 
The marching step may also vary with n but is always so 
chosen as to satisfy the usual CFL linear stability condition. 
The grid divides the computational domain into control 
volumes or cells (Fig. 1, Part I) which in the r-direction are 
centered at (Y, 4,) and have a width of Atj = t, + ,,* - rip ,,* 
for all n. Unless otherwise stated, we shall use uniform cell 
width, i.e., Atj = h for allj. 

The difference equations for thejth cell at time step n are 
formally derived by integrating Eq. (1) over that cell as in 
Part I to give 

Here for any quantity g, 

is the cell-average of g at time step 12 and 

(10) 

is its time-average. 
In the first-order Godunov scheme the flow in thejth cell 

at time step n is approximated by a uniform flow as given by 
its cell-average EJ’, and the flux F,“:$’ along the interface (a 
streamline) between the jth cell and the (j + 1)th cell from 
time step n to IZ + 1 is then obtained from the self-similar 
solution W(5 - tj+ lp)/(~ - ~~1; QyQy+ 1) at t = tj+ 112 to 
the Riemann problem formed by two adjacent uniform flow 
states Qy and QJ’, ,. This flux will be denoted with a 
superscript G and the updating formula, Eq. (8), is written 
accordingly as 

or 

E;+‘= E; - n[(F”);=,::‘- (FG);f;/2] (11) 

E n+l =E;-lAp(F’);=;/;, (12) 

where 

A ~ Sj t 112 = gl+ I/Z - g, ~ 112 (13) 

and 2 = Ar”/AS,. We note from Eq. (1) that the first two 
components of E, e, and e2, are constant for all z and hence 
require no updating; the updating formula (11) applies only 

To improve accuracy from the first-order Godunov 
scheme, we extend the second-order scalar TVD scheme of 
Sweby [ 111 in a component-by-component manner and 
propose the following updating formula for the system of 
Euler equations (1): 

(AF,.,,, )+ = F(Q;+ 1) - (FG);::jZ 

(AFj+1/2Jp = (FG);~,‘!:-FF(Q~) 
+ 

“ii l/2 = 2 ‘(lgv’ ) .I + 112 (15) 

v,‘+ 112 = ‘(A(fi).j+ d’lC(ej)~+, - (e$l 

(i= 3, 4, 5, 6) 

and 

(i= 3, 4, 5, 6). (16) 

Equation (14) was derived [ 111 for the special case when 
E is a scalar. We have applied it to the Euler equations (1) 
for each component e3, e4, e5, and e6 separately. For 
instance, to update the third component e, from time step n 
to n + 1 all quantities on the RHS of (14) are evaluated 
using (e,); for Ey and (f3),” for F,“. Once El + ’ is calculated 
via (14) the same decoding procedure as m Part I is then 
used to compute the flow state QT” and the updating 
process is repeated to the next time step n + 2, and so on and 
so forth. 

In Eq. (14) 4 = 4(u) is the limiter function. 4 = 0 reduces 
(14) to the first-order Godunov scheme, whereas 4 = 1 
yields the conventional second-order Lax-Wendroff scheme 
which produces non-physical oscillations around discon- 
tinuities. The idea of flux limiter is to suitably choose 4(r) so 
that (14) is total variation diminishing while hoping to 
retain second-order accuracy in most parts of the con- 
tinuous flow regions except at extrema, where it degenerates 
to first order. It is this TVD property that removes the non- 
physical oscillations. Several flux limiter schemes have been 
proposed and, as mentioned earlier, Sweby [ 111 has shown 
that they amount to different choices of the limiter function 
d(y). Our numerical experiments using the limiters of 
Van Leer [17], Chakravarthy and Osher [lS], Roe [19], 

to e3, e4, e5, and e6. and Sweby [ 111 show that there is little difference between 
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them. All results presented in this paper have been obtained 
using Van Leer limiter for which 

17) 
(r)O) 

( 

For the scalar case, second-order accuracy of scheme ( 
is attained [ 11). The simple extension of the scheme 

14) 
to 

the system of Euler equations as explained above does not 
theoretically assure its second-order accuracy. But our 
numerical experiments have shown (see Figs. 8 and 11 
below) that it is much more accurate than the first-order 
Godunov scheme, and we shall call it a high resolution TVD 
scheme. 

As seen from the structure of (14t( 16), to update E, from 
time step n to n + 1 with high resolution requires knowledge 
of live computational cells: E,“- *, E,“- i , EJ’, ET+ i, and E,“, z, 
whereas the first-order Godunov scheme requires only 
three: Ey- ,, E,“, and ET+ ,. Whilst the requirement of a 
stencil of live computational cells, instead of three, causes 
no difficulty for purely initial value problems, it does present 
some problems when a solid boundary is present in the flow. 
The special treatment required at the solid boundary will be 
discussed now. 

3.2. Sub-cell Treatment for Smooth Walls 

Let the cell adjacent to the wall be denoted by j= 1. At 
time step n, Ey is known for j= 1, 2, 3, . . . . so the updating 
formula (14) can be readily used to obtain Ej”” for 
j = 3, 4, 5, . . . . but not so for j = 1 and 2. At the wall the flow 
direction 0 is given, and the flow tangency condition there 
can be satisfied by introducing a lictious cell, j = 0; on the 
other side of the wall which is the mirror image of the flow 
of the cell, j = 1 with respect to the wall tangent plane. (The 
application of this reflection principle was noted in Part I to 
be equivalent to solving a boundary Riemann problem.) 
The introduction of this fictitous cell j = 0 allows us to apply 
the high resolution updating formula (14) also for j = 2, 
leaving the updating of the boundary cell, j= 1, at first- 
order accuracy. 

To have the same accuracy for the boundary cell requires 
a knowledge of an additional cell, j = -1, below the cell 
j = 0 which, it might be thought, could easily be obtained by 
extrapolation. Unfortunately, our computer experiments 
with various seemingly reasonable extrapolations prove 
fruitless; rather they tend to confirm the observation of 
Vinokur [20] that at solid boundaries a first-order scheme 
is preferable to a second-order one in preventing unphysical 
results. 

However, in a given supersonic stream past a solid body 
it is the body shape that determines the subsequent develop- 
ment of the flow. It is, therefore, important to be able to 

compute the flow near the solid boundary more accurately 
than the first order. This can be done by following the 
boundary shape more closely. We have found that a sub-cell 
treatment for the boundary cell serves this purpose very 
well. The procedure is as follows. To obtain an improved 
E ;+I the width h of the original cell AB (Fig. 4) at time step 
n is divided into m equal sub-cells of width h/m. The first- 
order Godunov scheme is then applied to compute the time 
evolution of these subcell flows by marching with sub-time 
AT/m, AZ being the original time step. In doing so the inter- 
face flux originally calculated along the cell upper boundary 
AD is used as the flux along AA i , while for the flux along 
the body surface the surface slope of BB, is used (in the 
boundary Riemann solver) instead of the original slope of 
BC. This process is repeated m times until the original time 
step n + 1 is reached, during which the upper interface flux 
is held to be the same as that given by the original flux along 
AD, but the surface slope assumes its local values at the sub- 
segments BB,, B, B,, . . . . B,-, B,. After the last sub-time 
step, E;+’ (i= 1, 2, . . . . m) are obtained and the arithmetic 
average is then taken to yield 

n+l El z-!-f E;;’ 

1=1 

This completes the sub-cell treatment for the boundary cell 
from time step n to n + 1. The computation can then be 
marched as usual from time step n + 1 to n + 2, again with 
sub-cell treatment for the boundary cell. 

It is clear from the description above that the sub-cell 
treatment inputs more details of the curved boundary shape 
to the flow field, but is ineffective and hence not useful for 
flat boundaries. In this paper it is employed in Figs. 5 and 
10 only. The sub-cell treatment for the boundary cell is very 
easy to implement and, with m = 0( l/h”*), the accuracy of 
the computed flow in the boundary cell is found to be typi- 
cally improved to the same level as the interior cells. An 
example is given in Fig. 5 in which the supersonic flow of 
M, = 3 is expanding over the wall shape y = -x2. Fifty 
uniform cells with h = 0.002, m = 10 are used in the com- 
putation. It is seen from these figures that the pressure can 

E 
I B B, 8, B,.=C 

LT 
FIG. 4. Boundary sub-cells. 
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FIG. 5. Flow variables along a typical time line AA’, in an expansion flow over a smooth surface. Computed from (14H 17) with h = 0.002, m = 10: 
(a) pressure; (b) Mach number; (c) entropy. 

be computed accurately without a sub-cell treatment, but special procedures were devised for numerically treating 
for Mach number and entropy a sub-cell treatment is the singularity. With the high resolution TVD scheme 
necessary to bring the accuracy of the high resolution TVD equations (14)-(17) we have found that the procedure for 
scheme more uniformly. This result is also typical of general treating an expansion corner can be simplified, yielding 
flow field computation in that pressure is a flow variable somewhat more accurate results, as follows: 
which can be computed very accurately, but entropy should 
be the one to use for critically testing the accuracy of a (a) Adjust time step size so that the turning corner is hit 
numerical method. exactly by a grid time line. 

3.3. Special Procedure for Wall-Corner 
(b) Use the flow state Q,, U,, I’, immediately upstream 

of the corner to calculate that immediately downstream of 
The presence of a corner at the wall generates singular it, the latter being denoted as Qd, U,, I’,: This is done by 

behavior of the flow field near the corner. In Part I, using the Prandtl-Meyer exact solution in Lagrangian form 

581/103/Z-18 
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FIG. 6. Prandtl-Meyer flow, M = 10, a = lo”, computed flow variables along a typical time-line AA’, from (14)-( 17). No sub-cell treatment. 
(a) pressure; (b) Mach number; (c) entropy. 

(Part I); in particular, U, and V, are obtained by integra- 
tion along a streamline. 

(c) Applying the updating formula (14) as usual until 
the wall cell falls completely downstream of the Prandtl- 
Meyer expansion fan. Then replace the numerically calcul- 
ated Q, U, I/ for the wall cell by Qdr Ud, Vd and terminate 
the special procedure. 

Systematic computations of supersonic flow M past an 
expansion corner angle c(, for various combinations of A4 
and CC, show that this special procedure usually leads to 
error in entropy of less than about 2 % when compared with 
the exact Prandtl-Meyer solution. Figures 6 plot the results 
of the case of M= 10 and CI = 10” which clearly show that 

the special treatment for a corner is essential for getting 
accurate results for wall density, Mach number, and 
entropy. No sub-cell treatment was applied here. The pre- 
sent results are also seen to be slightly more accurate than 
those of Glaz and Wardlaw based on Eulerian formulation. 
For instance, with the same number of 22 cells their 
computed Mach number has a maximum error of 6% 
(Fig. 10 of [ 3]), compared to 2.5 % in ours (Fig. 6b). 

4. EXAMPLES 

Four examples are given in this section to show the 
capability of the high resolution TVD scheme equations 
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(14t(17) based on the new Lagrangian formulation in 
resolving shock and slip-line discontinuity and in improving 
the accuracy of continuous flow. This will be demonstrated 
by comparison with exact solutions, with the first-order 
Godunov scheme, and with the second-order scheme of 
Glaz and Wardlaw based on the Eulerian formulation. In all 
these examples, except Fig. 10, no sub-cell treatment was 
employed. 

The first example is the interaction of two shocks which 
was first computed by Glaz and Wardlaw [3]. The shock- 
shock interaction is generated by a flow of A4 = 10 in a con- 
verging channel containing both upper and lower wall slope 
discontinuities at 10” and 20”, respectively. The collision of 
the two shocks belonging to different families produces two 
new shocks and a slip-line. Figures 7a-b show the pressure 
and density distributions along a typical time-line after the 
collision as computed from Eqs. (14)-( 17) with no special 

0.60 I 

a 

0.10 - q Godunov 

. TVD 

0.00 L I  I  I  I  I  I  ‘ I  I  - 
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14.0 , 

12.0 - 
0 Godunov 

10.0 - 

g 8.0 - 

6.0 - ” 
0 

ao . 

4.0 - 
L 

. 
q A 

FIG. 7. Shock-shock interaction problem. Computed variables along 
a typical time-line AA', from (14H17). No sub-cell treatment. (a) pressure; 
(b) density. Solid line denotes exact solution. 

procedure for slip-line detection. The exact solution (solid 
line) is also plotted for comparison, and the agreement is 
seen to be very good. By comparison with the first-order 
results of Part I, it is seen that the resolutions of shocks and 
slip-line are significantly improved. The high resolution 
TVD scheme equations (14)-(17), with no sub-cell treat- 
ment, take a maximum of two cells to cross a shock and 
only one to cross the slip-line, compared with six and two, 
respectively, for the first-order Godunov scheme. Further- 
more, comparisons with the second-order scheme of Glaz 
and Wardlaw [3, Fig. 173 in Eulerian formulation show 
that both methods attain the same level of shock resolution 
whilst the slip-line is much better resolved in the new 
Lagrangian formulation. 

The second example is the Riemann problem No. 1 com- 
puted in Fig. 6 of Part I recomputed using the present TVD 
scheme equations (14t( 17). The results for pressure and 

'1.5 a. 
-- cxac, 
cl God”““- ‘rhcmc 
n TVD Schcmc (14).(17) 

0.01 1 1 1 ) 1 !  

0.0 0.2 0.4 0.6 0.8 1 .o 

distance along time line 

b 

0.5 
- exact 

Godunov scheme 

TVD Scheme (14).(17) 

o.ol 0.0 0.2 0.4 0.6 0.8 1 .o 

distance along time line 

FIG. 8. Pressure and density distributions along a time-line AA' in a 
Riemann problem computed using (14H17): (a) pressure; (b) density. 
No sub-cell treatment. 
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density distributions along a typical time line are plotted in 
Fig. 8. It is clear from comparisons with exact solutions in 
these figures that the high resolution TVD scheme is a 
significant improvement over the first-order Godunov 
scheme in the continuous flow region, while it also improves 
somewhat in shock resolution. 

In the third example we compute a supersonic flow 
M, > 1 past a concave wall for which a shock of finite 
strength is formed suddenly in the interior of the how field 
and consequently a slip-line is also generated. The shape of 
the wall is given (see Appendix A) parametrically as 

i 

-= 1 _ G(M) cos{cW) - Wfo) + PO> xwf) 
1 GWo) ~0s ~0 

r: 
(Ml < MG MO), 

Y(M) sinI4W) - #(MO) + ~~1 
I 

_ tan ho 

G(Mo) sin p. 1 
\ (M,<M<M,) 

(18a) 

on the curve part, followed by a straight line tangent to it at 
the point corresponding to M= M, > 1, the equation of 
which is 

Y-Y(Ml) 

x-x(M1) = tanC4W1) - cWo) - pl + ~~1 

(1 dM<M,), (18b) 

where I is an arbitrary length scale which is taken to be 
equal to 1, M is flow Mach number, and 

1 
p=sin-‘- 

A4 

G(M)= 1 f ‘; 1 M2]((y+l)‘+JJ’2 

[ 

4(W=Jb+ l)l(Y- 1) 

x tan-‘[J-/d-l. 

The family of curves r for different MO but with M, = 1 
are plotted in Fig. 9. From any of these curves one can con- 
struct a wall shape consisting of a concave forward portion 
r for 1 < M, < M < M, followed by a straight line tangent 
to r at its end point (x(M,), y(M,)). When this shape is 
placed in a supersonic uniform stream MO with its leading 
edge aligned to the stream, the flow is compressed in a 

MO=20 Mn=10 

FIG. 9. Concave curves r that generate a shock of finite strength 
suddenly Eq. (18a) ( 1 < M < M,). 

particular manner such that a shock of finite strength is 
produced suddenly at P,( 1, tan po). At the same moment, a 
slip-line is also generated at the same point (see Fig. 10a). 
The exact solution to this flow is obtainable via Riemann 
invariants for the continuous part and via the Riemann 
problem at shock birth. 

To illustrate, we consider the case when MO = 4 and 
M, = 2.867. The flow field is computed using the high 
resolution TVD scheme equations (14t( 17) with 50 cells 
(h = 0.015) plus sub-cell treatment (m = 10) on the wall cell. 
In Figs. lob-d the computed isobars, density contours, and 
entropy contours are plotted. The sudden birth of a shock 
of finite strength in the interior of the flow field and the 
accompanying slip-line are seen well-captured. These figures 
also show the weak expansion can centered at the point 
of shock birth and its reflection by the plane wall. 
Figures lOe-f show the computed distributions of pressure 
and Mach number along a typical time line AA’ down- 
stream of the shock birth but before the expansion waves 
reach the plane wall. They are seen to be in very good agree- 
ment with the exact solution (solid line in the figures), in 
particular, both shock and slip-line are resolved in two grid 
points. 

In the last example’ we compute the Row due to a strong 
shock impinging on a slip-line. The shock is generated by a 
hypersonic flow of Mach 10 passing over a wedge of 20”. 
After the shock impinges on a slip-line, both the shock and 
the slip-line are deflected while a Prandtl-Meyer expansion 

’ We are grateful for the reviewer who suggests this example as a test 
case. 
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on a slip-line, 50 cells, h =O.Ol: (a) density contours; (b) pressure 
distribution along a time line AA'; (c) density distribution along a time 
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fan is generated. With 50 cells of width h = 0.01, the com- 
puted density contours are shown in Fig. lla, whereas the 
computed pressure and density distributions along a time 
line AA’ after the impingement are shown in Figs. 11 b, c. 
Agreements with exact solutions are, again, seen to be very 
good; in particular, both shock and slip-line discontinuities 
are seen resolved to within two grid points. 

5. CONCLUSIONS 

It has been shown in this paper that the new Lagrangian 
formulation of Hui and Van Roessel plus Godunov scheme 
is capable of resolving an isolated slip-line discontinuity in 
steady supersonic flow crisply, provided it is initially aligned 
with a computational grid line. It has further been shown 
that the high resolution TVD scheme equations (14))( 17) 
based on the new Lagrangian formulation, with no special 
procedure for slip-line detection, are very accurate and 
resolve both shock and slip-line discontinuities to within 
two grid points. This is achieved despite the slip line 
being a linearly degenerated field. Moreover, in the new 
Lagrangian formulation using stream-lines as coordinate 
lines there is no need for grid generation to lit a given body 
shape, as is required in Eulerian formulation. In these 
regards, the new Lagrangian method is evidently superior to 
the Eulerian method for computing steady supersonic flow 
of an inviscid gas. We also note that the Lagrangian method 
was used recently by So and Zhang [21] with success to 
help resolve slip-line discontinuity in their overall Eulerian 
formulation. They re-map to Eulerian description at each 
time step. By contrast, the present method is entirely 
Lagrangian and no re-map is necessary. 

APPENDIX A: EXACT SUPERSONIC FLOW WITH 
SUDDEN FORMATION OF SHOCK WAVE 

W. H. Hui and Y. C. Zhao 

It is well known that when a supersonic flow encounters 
a concave solid wall it is compressed by the wall and a shock 
wave will be formed. If the wall has a corner-surface slope 
discontinuity-a shock wave of finite strength is formed at 
the corner and extended into the flow field. If, on the other 
hand, the wall is smooth a shock wave is formed in the inte- 
rior of the flow field and, in general, it is formed gradually 
along the envelop of the converging Mach lines with 
infinitesimal strength at its birth point. 

Here we set out to determine families of smooth wall 
shape r whose compression effects on the supersonic flow 
lead to sudden formation of a shock of finite strength in the 
.interior of the flow field. 

Let the steady uniform supersonic stream MO > 1 be 
aligned with the x-direction in the Cartesian xy plane 
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(Fig. 9a). Let the sought-for wall shape r be given 
parametrically as 

x=x(e), z = Y(e), (Al) 

where I3 is the inclination of its tangent, whence 

dy dx 
z = z tan e. t-42) 

We also choose the origin of the coordinate system so that 

x(0) = y(0) = 0. (A3) 

Let P,(x,, yO) be the point where the shock of finite 
strength is first formed. Then, clearly, every straight line 
joining P, to a point M(x(8), y(8)) on r is a Mach line of 
the flow. Hence 

where 

Y(e) - Y, = c-w -x03 tan@ + 4, (A4) 

p=sin-‘-L 
M (W 

is the Mach angle and M is the flow Mach number. At 
0 = 0, Eq. (A4) yields 

y, = x0 tan p. (‘46) 

Elimination of y(8) from (A2) and (A4) gives 

$[tan(H+p)-tan8]=[x,-x(B)1-$tan(0+p) (A7) 

whose solution is 

x = x0( 1 - e-‘(O)), (A8) 

where 

Since prior to shock formation the flow is a simple wave, 
we have (see Whitham [21]) 

e = P(P) - mob (AlO) 

where 

P(~L=J(y+l)l(y-1)tan-‘(J(y+l)/(y-l)tan~)-- 
(All) 

and y is the ratio of specific heats of the gas. 
By use of (AlO) and.(All), the RHS of (A9) can be 

integrated out explicitly. The results for x and y, when 
expressed as functions of M, are given in Eq. (18a), where 
the arbitrary constant x0 has been replaced by 1. 

For a given MO > 0, there is a unique curve r defined in 
Eq. (18a) for 1~ M d MO. A wall shape can be constructed 
for any given MO with M, > 1 and M, <MO, by using the 
forward portion of I- for M, < M< MO followed by a 
straight line tangent to r at its end point M, whose 
equation is given by Eq. (18b). Such a shape for MO = 4 and 
M, = 2.867 is shown in Fig. 9a. 

Exact solution to steady supersonic flow MO > 1 past any 
wall shape constructed above with M, > 1 can be obtained 
easily. In the fan region centered at P,(x,, yo) the flow is a 
simple wave and is given by Eqs. (AlO) and (All), together 
with the fact that along each Mach line P,M all the flow 
variables are constant. At the point of shock formation PO 
we have a Riemann problem: the uniform flow MO above P 
and a uniform flow (that on P,M,) below it. The solution 
to the Riemann problem is well known. 

If the simpler case of one-dimensional unsteady flow we 
may also determine the motion of a piston x = x(t) toward 
a gas at rest with t being the time variable, such that a shock 
wave of finite strength will be formed, due to compression of 
the piston, in the interior of the flow field. Applying similar 
arguments as above, we obtain 

Y+l x(t) = - 
Y-l 

(-Jot0 12-f-( 1 -~)“‘i+“] 
[ 0 

(0 6 t < to), C-412) 

where a, is the speed of sound of the undisturbed gas. The 
shock of finite strength is formed suddenly at time to 
beginnin at x0 = a,t,. A slip-line (contact-line) is also 
produced simultaneously at x = x0 and t = to. The unsteady 
flow field of the gas resulting from the motion of the piston 
can also be calculated exactly using Riemann invariants for 
the continuous part for t < to and by solving the Riemann 
problem at t = to when the shock is suddenly formed. 

The strength of the shock and contact line can be varied 
by varying a, and to. It would be interesting to see how 
accurate the many existing shock-capturing schemes for 
one-dimensional unsteady flow are in reproducing this exact 
solution to an initial-boundary value problem, in addition 
to Sod’s famous shock-tube initial value problem where the 
position of the contact line is known initially. 
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